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The Matrix Method

Main steps:
■ Extract element matrices
■ Impose nodal equilibrium
■ Impose boundary conditions
■ Solve for unknown displacements
■ Postprocess results

This week:
■ Recap differential equation for structures
■ Degrees of freedom at nodes
■ Local and global stiffness matrix
■ Neumann and Diriclet boundary conditions
■ Local-global transformations
■ Example: Displacements of extension bar
■ Workshop: Implement and check missing components, and solve a complicated frame
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Learning Objectives

At the end of this module, you should be able to:
■ Translate the main steps of the matrix method into a set of programming classes with distinct tasks
■ Extend the classes to solve arbitrarily complex frame problems in statics
■ Postprocess the analyses and recover continuum fields exactly

Learning setup:
■ Lectures on theoretical aspects (2× 2 h)
■ Two guided, non-graded workshops (2× 2 h), solutions provided afterwards
■ Additional non-compulsory assignments exercises which you’re ready for after the workshops
■ Graded assignment as part of report
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Recap: A single-field problem

Getting to an ODE:

■ Kinematic relations:
φ = −dw

dx
κ =

dφ

dx
■ Constitutive relations:

M = EIκ

■ Equilibrium relations:
dV

dx
= −q

dM

dx
= V

Combining it all into a single differential equation:

EI
d4w

dx4
= q
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Recap: A single-field problem

Solving the ODE (strong form!):

■ Integrate the ODE, exposing integration constants:

w(x) =
qx4

24EI
+

C1x
3

6
+

C2x
2

2
+ C3x+ C4

■ Enforce boundary conditions:

w(0) = 0 φ(0) = 0 M(ℓ) = 0 V (ℓ) = 0

■ Solve the system for the constants:

C1 = − qℓ

EI
C2 =

qℓ2

2EI
C3 = C4 = 0

Substituting the constants, a final solution for w can be found:

w(x) =
qx4

24EI
− qℓx3

6EI
+

qℓ2x2

4EI
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Recap: A two-field problem
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Recap: A two-field problem

Field 1:

ODE: EA1
d2u1
dx2

= 0

Field: u1 = C1x+ C2

BC: u1(0) = 0
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BC: u1(0) = 0

Field 2:

ODE: EA2
d2u2
dx2

= 0

Field: u2 = C3x+ C4

BC: N2(ℓ1 + ℓ2) = F
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Okay, easy. But how about this one?

Integration constants? Interface conditions? It gets annoying very quickly...
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Is there an easier way? Deformation of a single element
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Is there an easier way? Deformation of a single element

ODE solution:

EA
d2u

dx2
= 0

u(x) = C1x+ C2

u(0) = u1 u(ℓ) = u2

C1 =
u2 − u1

ℓ
C2 = u1

u = u1

(
1− x

ℓ

)
+ u2

x

ℓ
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ODE solution:

EA
d2u

dx2
= 0

u(x) = C1x+ C2

u(0) = u1 u(ℓ) = u2

C1 =
u2 − u1

ℓ
C2 = u1

u = u1

(
1− x

ℓ

)
+ u2

x

ℓ

Element and node forces:

N =
EA

ℓ
(u2 − u1)

F1 = −N1

F2 = N2
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How to combine elements? Nodal equilibrium
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How to combine elements? Nodal equilibrium

Node equilibrium:
∑

F1 = 0 ⇒ −EA1

ℓ1
u1+

EA1

ℓ1
u2 +H = 0

∑
F2 = 0 ⇒ EA1

ℓ1
u1−

EA1

ℓ1
u2−

EA2

ℓ2
u2+

EA2

ℓ2
u3 = 0

∑
F3 = 0 ⇒ EA2

ℓ2
u2−

EA2

ℓ2
u3 + F = 0
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Node equilibrium:
∑
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ℓ1
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ℓ1
u1−
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ℓ2
u2+
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ℓ2
u3 = 0

∑
F3 = 0 ⇒ EA2

ℓ2
u2−

EA2

ℓ2
u3 + F = 0

Combining and rearranging:

−
∑
e

f e + fnodal = 0

∑
e

f e = fnodal
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Deformation of a single element — matrix form
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Deformation of a single element — matrix form

ODE solution:

EA
d2u

dx2
= 0

u(x) = C1x+ C2

u(0) = u1 u(ℓ) = u2

C1 =
u2 − u1

ℓ
C2 = u1

u = u1

(
1− x

ℓ

)
+ u2

x

ℓ

Edge forces:

F1 = −N1

F2 = N2

Relating f and u:

EA

ℓ

[
1 −1
−1 1

] [
u1
u2

]
=

[
F1
F2

]

K(e)u(e) = f (e)
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Nodal equilibrium — matrix form
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Nodal equilibrium — matrix form

Node equilibrium:
∑

F1 = 0 ⇒ −EA1

ℓ1
u1+

EA1

ℓ1
u2 +H = 0

∑
F2 = 0 ⇒ EA1

ℓ1
u1−

EA1

ℓ1
u2−

EA2

ℓ2
u2+

EA2

ℓ2
u3 = 0

∑
F3 = 0 ⇒ EA2

ℓ2
u2−

EA2

ℓ2
u3 + F = 0

Combining and rearranging: EA1

ℓ1
−EA1

ℓ1
0

−EA1

ℓ1
EA1

ℓ1
+ EA2

ℓ2
−EA2

ℓ2
0 −EA2

ℓ2
EA2

ℓ2

[
u1
u2
u3

]
=

[
H
0
F

]

Ku = f
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A more structured way to work

Steps:
■ Identify degrees of freedom at nodes (DOFs)

■ Initialize the system with zeros
■ Assemble stiffness, element by element
■ Apply external loads (Neumann BCs)
■ Apply prescribed displacements (Dirichlet BCs)
■ Solve for the unkown nodal displacements
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[
0 0 0
0 0 0
0 0 0

]u1u2
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 =
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0


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0

−EA1

ℓ1
EA1
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ℓ2


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u2
u3

 =

H0
F


EA1

ℓ1
+

EA2

ℓ2
−EA2

ℓ2

−EA2

ℓ2

EA2

ℓ2

[
u2

u3

]
=

[
0

F

]

u2 =
Fℓ1
EA1

u3 =
F (EA1ℓ2 + EA2ℓ1)

EA1EA2

Steps:
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■ Initialize the system with zeros
■ Assemble stiffness, element by element
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Other element types

K(e) =

 EA

ℓ
−EA

ℓ

−EA

ℓ

EA

ℓ




EA

ℓ
0 0 −EA

ℓ
0 0

0
12EI

ℓ3
−6EI

ℓ2
0 −12EI

ℓ3
−6EI

ℓ2

0 −6EI

ℓ2
4EI

ℓ
0

6EI

ℓ2
2EI

ℓ

−EA

ℓ
0 0

EA

ℓ
0 0

0 −12EI

ℓ3
6EI

ℓ2
0

12EI

ℓ3
6EI

ℓ2

0 −6EI

ℓ2
2EI

ℓ
0

6EI

ℓ2
4EI

ℓ



Different element kinematics and stiffness matrices, same procedure
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Element orientations, local-global transformations

Defining a local (element) coordinate system is useful:
■ Single stiffness matrix for every element!
■ Assembly: From local to global
■ Postprocessing: From global to local
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Local-global transformations

Transformations for an arbitrary vector:[
vx
vz

]
=

[
cosα − sinα
sinα cosα

]
︸ ︷︷ ︸

R

[
vx
vz

] [
vx
vz

]
=

[
cosα sinα
− sinα cosα

]
︸ ︷︷ ︸

RT

[
vx
vz

]

Transformations for a complete element:
u1

w1

φ1

u2

w2

φ2

 =


cosα − sinα 0 0 0 0
sinα cosα 0 0 0 0
0 0 1 0 0 0
0 0 0 cosα − sinα 0
0 0 0 sinα cosα 0
0 0 0 0 0 1


︸ ︷︷ ︸

T


u1

w1

φ1

u2

w2

φ2


With this we can define the following important transformations:

u = Tu f = Tf u = TTu f = TTf

K = TTKT
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Coding the matrix method

The method is well structured and can be broken down as follows:
■ A list of Nodes floating in space with loads and DOFs associated to them

■ A list of Elements defined by linking two nodes together
■ A Constrainer to apply Dirichlet boundary conditions
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Coding the matrix method

Node

Coords Loads DOFs

- Stores nodal data
- Keeps track of global DOF indices

Element

Section Stiffness Nodes

- Performs coordinate transformations
- Recovers fields from nodal values

Constrainer

DOFs Values

- Applies Dirichlet BCs
- Recovers support reactions

The method is well structured and can be broken down as follows:
■ A list of Nodes floating in space with loads and DOFs associated to them
■ A list of Elements defined by linking two nodes together
■ A Constrainer to apply Dirichlet boundary conditions

With this in mind, we can define object-oriented code which can be loaded as a python package:
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Outlook

First ungraded workshop:
■ Get familiar with an initial Python code
■ Implement a few missing parts and perform some sanity checks
■ Apply your implementations to a small structure
■ Have Git, Anaconda and Jupyter installed and ready
■ Never used Git? Let me (Tom) know!

Next week:
■ One more lecture on theoretical aspects
■ Second ungraded workshop to add more implementations and solve a more advanced structure
■ Graded assignment: Implement, check and apply new features required for complicated frame

structure and additional results.
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