CIEM5000: Structural Engineering Base

Matrix Method — Final Details
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The Matrix Method

Main steps:

Extract element matrices

Impose nodal equilibrium

Impose boundary conditions
Solve for unknown displacements
Postprocess results

This week:

Element loads

Non-zero Dirichlet boundary conditions in two different ways
Postprocessing: support reactions and element fields

Matrix method versus FEM — parallels and differences

Example: Support reactions of extension bar with distributed load
Example: A fully-resolved example by hand

Workshop: Wrap up the code and solve a frame structure
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Element loads

The matrix method is a discrete approach
= Nodal loads treated easily
= What if we have loads applied inside elements?

A number of approaches to handle this:
= Further discretization (seldom helps)
= ODE approach
= Work-based approach
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Element loads — ODE approach

We can follow the same steps as before:
= General solution for the ODE:

= FA(

Uy

F,
>

Uy
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Element loads — ODE approach

) . S
We can follow the same steps as before: S5
= General solution for the ODE: = EA, L =>
1 2
d*u qz?
EAS—~ = — =
Epe qg = u(x) 2EA + Ciz + Cs
= Boundary conditions and final solution:
14 _
u(0) =u1 u(l) =uz = 01:2;}7+u2£u1 Ca =

u(x)zi(ﬁx—mQ)—&—ul (1—%)4—%
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Element loads — ODE approach

R .49 _ F
We can follow the same steps as before: o3
= General solution for the ODE: = EA, ¢ =>
1 2
d*u qz?
Gz 1 T @)= gpg Cet G
= Boundary conditions and final solution:
14 _
w0) =u1 u(l) =u2 = 01:2;1?7+u2€u1 Co =y
- _9 _ 22 _z U2
u(m)—QEA(Ex m)+u1(l Z)+ 7
= Relate forces at the edges with internal stresses:
EA 0—2
N(Z')ZT(UQ_Ul)"‘iq qu Fi =—N1 Fy = N>
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Element loads — ODE approach

oo, 4, | F
We can follow the same steps as before: S5
= General solution for the ODE: = EA, ¢ =>
1 2
d*u qz?
EA=— = — =1
P qg = u(x) 2EA + Ciz + Cs
= Boundary conditions and final solution:
14 _
w0) =u1 u(l) =u2 = 01:2;1?7+u2£u1 Co =y
- _9 _ 22 _z U2
u(e) = 5z (b2 =)+ (1-7) + 5
= Relate forces at the edges with internal stresses:
EA 0—2
N(x):7£ (UQ_U1)+7q qu Fi =—N1 Fy = N>

= Relate forces and displacements, but now an extra term appears:

ql
EAT1 —1){wm]| |5| _ [~
f -1 1 u qu 7F2
2
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Dealing with equivalent loads

H Fll) F(I Fl’) Fi’i F

The new term is an equivalent nodal load: _)?(_ (1 (_5‘_ ) (_g_,

= Element loads = nodal loads
= Force equilibrium at the nodes therefore changes a bit:

- Z fﬁ‘i’fnodal =0

- Z + fnodal =0
Z (Ku®) = fuodal + Z feq

e
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Dealing with equivalent loads

H Fil) F(I) Fl’) Fi’i F

The new term is an equivalent nodal load: _)?(_ (1 (_5‘_ ) (_g_,

= Element loads = nodal loads
= Force equilibrium at the nodes therefore changes a bit:

= > f+faoam =0

- Z + fnodal =0
Z (Keue) = fhodal + Z f:q

e

Remember, this is a force in the global coordinate system!

fog = T fe,
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Work-based element loads

Euler-Bernoulli bending, point load at midspan:

= Displacement field for arbitrary DOFs (ODE with ¢ = 0):

22°  3a2? 3
w(z) = [—37[—2+1 wy + 7/—24»

222
7

e

M

w,

223

7[T+7

wl/Z 2 . P . ,
o BCUEE Bl W § S
ELC ﬁ’ L ’¢

w, Fjw,

1

q

s1

s2
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Work-based element loads

F_i P
b1 [/zw @) P2 T P P2 T
Euler-Bernoulli bending, point load at midspan: QT‘Q ( QT“Q D ’
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): t, !2 F}’y// !fz 7y
223 32?2 ) 3 222 2° 32?2 3 2
w(z) <[T m + l) w1 + <772 = 751,') v1+ (*I—j + 7) wy + <77, + 7> ©2
= Work performed by edge forces:

W = Ff, + T, + FSws + 150
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Work-based element loads | P

¢ 2 P2 " P P2 "
Euler-Bernoulli bending, point load at midspan: 9%‘9 Tﬁ QT“Q DTZ
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): 3, !z F}’!// zt 7y
2% 32% z® 227 N\ 23 322 2 a? N
w(z): F*?‘Fl w1 + *ﬁ*FT*vI/ \,/1+ */T‘F[T wa + 7ﬁ’7>\,/l

= Work performed by edge forces:

Wr = F{%1 + 17 %1 + F3%ws + 15" 00

= Work performed by P under the same displacement:
Wy = Pw(£/2) = (Ps1(£/2)) w1 + (Ps2(0/2)) o1 + (Ps3(0/2)) wa 4+ (Psa(£/2)) oo
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Work-based element loads | P

P . 1 2 y
Euler-Bernoulli bending, point load at midspan: i ZI(’)[ i Tﬁ ?T“-? DTZ
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): b A oy Wy Y
22 322 z® 212 2° 32 3 z?
w(z) = <[—d - +l> wi + <772 + 751:> 01+ (*I—j + 7) wa + <7T‘ + 7) P2

= Work performed by edge forces:
Wr = F{%1 + 17 %1 + F3%ws + 15" 00

= Work performed by P under the same displacement:
Wy = Pw(£/2) = (Ps1(£/2)) w1 + (Ps2(€/2)) o1 + (Ps3(£/2)) wa + (Psa(£/2)) p2

= Enforcing Wy = W, and isolating terms:

P

AN

. ,I.IV,L _ -5
Sl L I
5" /%/

o|
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Work-based element loads !

4 P2 Y ] P2 Y
Euler-Bernoulli bending, constant distributed load: ‘9%9 T’Q‘ ‘QT“-D ‘37'-’
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): zt, i p;/!, t 4
223 32?2 3 222 2° 32?2 3 2
w(zr) = <[T - +l> wi + <772+ a 77> 01+ <7£T+/T>“}2+ <77,+7> P2
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Work-based element loads

Euler-Bernoulli bending, constant distributed load:
= Displacement field for arbitrary DOFs (ODE with ¢ = 0):

2% 327

w‘”i(?s*?z

q

4] P2 P 23
) we) vy T ) Y ‘37'5
ﬁ ' EI ¢ ’

EI ¢ '
w, Ffw, n I

327\ v,v‘+£ A
+/T w2 + = AL

84

s1

= Work performed by edge forces:
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Wr = Fi%1 + 17 %1 + F3%wa + 15" 00
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Work-based element loads !

4 P2 Y ] P2 .
Euler-Bernoulli bending, constant distributed load: ‘9%\ T’Q‘ ‘QT‘E\ DT-’
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): zt, ' i F‘;’w‘, i 4
223 32?2 ) 3 222 2° 32?2 3 2
w(z) = <[T - +l> wy + <772 = 751,') p1+ (*I—j + 7) w2 + <7T’ + 7) 2

= Work performed by edge forces:

W = Fhwy + T%: + FSOws + 15 0o

= Work performed by ¢ under the same displacement:

W, = /Z qu(z)de = ( /;qsmm)dm) wi + (/mn) o1+ ( /q<>d) wa + ( /un)
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Work-based element loads

Euler-Bernoulli bending, constant distributed load: T
= Displacement field for arbitrary DOFs (ODE with ¢ = 0): zt, ' i 94, d P
223 32?2 ) 3 222 2° 32?2 3 2
w(z) = é—.dfé—zwtl wit |\ —m T ) et (e Jwe 7ﬁ'7>;g

S1

= Work performed by edge forces:

Wr = F{%1 + 17 %1 + F3%ws + 15" 00

= Work performed by ¢ under the same displacement:

W, = /éqw(a:)dac - </;qsl(m)dm> w + (/4(152(.1?)(11) o1+ (/(ﬁs;;(m)d;r) wa + <./ ,,,”[_, )(1,,.> .

= Enforcing Wy = W, and isolating terms:

at
I 0)
e B K
feq = | e 12
eq },2 1 ﬁ
cq 2,
T, ql”
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Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
= For a fixed DOF, we can simply discard the corresponding equation
= We did this by striking the corresponding row/column in the final system
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Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
= For a fixed DOF, we can simply discard the corresponding equation
= We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:

Kyr Kye| fup| _ |fy
ch K. Uce fe
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Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
= For a fixed DOF, we can simply discard the corresponding equation
= We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:
Kyr Kye| fup| _ |fy
ch K. Uce fe
= Solve for the unknown DOFs:

Kgus + Kreue = ;= w = Kg' (ff — Keeue)
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Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
= For a fixed DOF, we can simply discard the corresponding equation
= We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:
Kyr Kye| fup| _ |fy
ch ch Uc fc
= Solve for the unknown DOFs:

Kgus + Kreue = ;= w = Kg' (ff — Keeue)

= After solving, we can easily recover support reactions:

fo = Kerus + Kecue
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Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
= For a fixed DOF, we can simply discard the corresponding equation
= We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:
Kyr Kye| fup| _ |fy
ch ch Uc fc
= Solve for the unknown DOFs:

Kgus + Kreue = ;= w = Kg' (ff — Keeue)

= After solving, we can easily recover support reactions:

fo = Kerus + Kecue

= Note: f. includes both nodal loads, equivalent loads and support reactions.
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Dirichlet BCs — Size-preserving approach

The approach from before can be annoying to code:
= Reordering the system costs computation time
= Gains when inverting the stiffness matrix are very limited (V. < Ny)

Alternatively, we can modify the relevant equations and solve the full system:

= Support reactions recovered later from the unconstrained system

K1 K2 Kiz| |w fi
Ko1 Ko Koz Uz | = f2
K31 K32 Kazz| |us f3
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Dirichlet BCs — Size-preserving approach

The approach from before can be annoying to code:
= Reordering the system costs computation time
= Gains when inverting the stiffness matrix are very limited (V. < Ny)

Alternatively, we can modify the relevant equations and solve the full system:

= Support reactions recovered later from the unconstrained system

Kin 0 Ki3] [w f1 — K129
0 1 0 u2 | = Ao
K31 0 Ksz| |us fza — K322
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Example — element loads and Dirichlet BCs

Let us use what we have just learned and show a quick example:
= Same two-element bar model as before = stiffness matrix does not change!
= Added distributed load and non-zero prescribed displacement on the right

[ p
l, ,
EA; _ EA
#a,  Ba, 'Ba f(;)
K= |-£4 Lo 2 o 2
L1 21 L 2
0 _ EA, BAS
2 2
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Element-level postprocessing

From discrete nodal displacements to continuum element fields:
= Assemble and solve the global system of equations:

Ku=f
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Element-level postprocessing

From discrete nodal displacements to continuum element fields:
= Assemble and solve the global system of equations:

Ku=f

= Select u® from u and go back to the local coordinate system:

u® = Tu®
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Element-level postprocessing

From discrete nodal displacements to continuum element fields:
= Assemble and solve the global system of equations:

Ku=f
= Select u® from u and go back to the local coordinate system:
a° = Tu®
= From the ODE solution, recover relevant fields as function of u®:

2% 3a2? x> 227 N\ 223 32? ) 2 2? R
w(z) = (’T77+1 w1 + *F‘FT*J w1+ *W‘FF wa + AL

B s s3

= Finally, plot the results! Works for displacements and any internal field (e.g. moments)
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Matrix method versus FEM

The two methods give the same results for bars. However:
= The matrix method solves the strong form ODEs exactly
= FEM solves the weak form problem on the shape function space
= Matrix method: strong form solved locally, elements glued together through equilibrium
= FEM: The weak form is solved globally
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Matrix method versus FEM

The two methods give the same results for bars. However:
= The matrix method solves the strong form ODEs exactly
= FEM solves the weak form problem on the shape function space
= Matrix method: strong form solved locally, elements glued together through equilibrium
= FEM: The weak form is solved globally

But how can they give the same solution?
= The "approximation" assumed by FEM (linear shape functions for extension, cubic for bending) turn
out to be the exact ODE solution
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Matrix method versus FEM

The two methods give the same results for bars. However:
= The matrix method solves the strong form ODEs exactly
= FEM solves the weak form problem on the shape function space
= Matrix method: strong form solved locally, elements glued together through equilibrium
= FEM: The weak form is solved globally

But how can they give the same solution?
= The "approximation" assumed by FEM (linear shape functions for extension, cubic for bending) turn
out to be the exact ODE solution

Then why don’t we just use the matrix method for everything?
= Gluing elements through equilibrium only works in 1D
= Exact ODE solutions in 2D generally do not exist
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Example — 3D frame with torsion

Full solution by hand to demonstrate all steps:
= Definition of a new element (torsion)
= Element reduction for tractability (bending)
= Element loads, support reactions, postprocessing

Values for numerical calculation:
= EJ = 1000 kNm?
GI, = 800 kNm?

= /=2m o
5 T =4kNm
= ¢ =6kN/m A1 ‘
= m =2kNm/m %
< e
l )
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