
CIEM5000: Structural Engineering Base
Matrix Method — Final Details

Tom vanWoudenberg, Iuri Rocha



The Matrix Method

Main steps:
■ Extract element matrices
■ Impose nodal equilibrium
■ Impose boundary conditions
■ Solve for unknown displacements
■ Postprocess results

This week:
■ Element loads
■ Non-zero Dirichlet boundary conditions in two different ways
■ Postprocessing: support reactions and element fields
■ Matrix method versus FEM — parallels and differences
■ Example: A fully-resolved example by hand
■ Workshop: Wrap up the code and solve a frame structure

2 / 12



Element loads

The matrix method is a discrete approach
■ Nodal loads treated easily
■ What if we have loads applied inside elements?

A number of approaches to handle this:
■ Further discretization (seldom helps)
■ ODE approach
■ Work-based approach

3 / 12



Element loads — ODE approach

We can follow the same steps as before:
■ General solution for the ODE:

EA
d2u

dx2
= −q ⇒ u(x) = − qx2

2EA
+ C1x+ C2

■ Boundary conditions and final solution:

u(0) = u1 u(ℓ) = u2 ⇒ C1 =
qℓ

2EA
+

u2 − u1

ℓ
C2 = u1

u(x) =
q

2EA

(
ℓx− x2)+ u1

(
1− x

ℓ

)
+

u2x

ℓ

■ Relate forces at the edges with internal stresses:

N(x) =
EA

ℓ
(u2 − u1) +

qℓ− 2qx

2
F1 = −N1 F2 = N2

■ Relate forces and displacements, but now an extra term appears:

EA

ℓ

[
1 −1
−1 1

] [
u1

u2

]
−

qℓ

2
qℓ

2

 =

[
F1

F2

]

4 / 12



Element loads — ODE approach

We can follow the same steps as before:
■ General solution for the ODE:

EA
d2u

dx2
= −q ⇒ u(x) = − qx2

2EA
+ C1x+ C2

■ Boundary conditions and final solution:

u(0) = u1 u(ℓ) = u2 ⇒ C1 =
qℓ

2EA
+

u2 − u1

ℓ
C2 = u1

u(x) =
q

2EA

(
ℓx− x2)+ u1

(
1− x

ℓ

)
+

u2x

ℓ

■ Relate forces at the edges with internal stresses:

N(x) =
EA

ℓ
(u2 − u1) +

qℓ− 2qx

2
F1 = −N1 F2 = N2

■ Relate forces and displacements, but now an extra term appears:

EA

ℓ

[
1 −1
−1 1

] [
u1

u2

]
−

qℓ

2
qℓ

2

 =

[
F1

F2

]

4 / 12



Element loads — ODE approach

We can follow the same steps as before:
■ General solution for the ODE:

EA
d2u

dx2
= −q ⇒ u(x) = − qx2

2EA
+ C1x+ C2

■ Boundary conditions and final solution:

u(0) = u1 u(ℓ) = u2 ⇒ C1 =
qℓ

2EA
+

u2 − u1

ℓ
C2 = u1

u(x) =
q

2EA

(
ℓx− x2)+ u1

(
1− x

ℓ

)
+

u2x

ℓ

■ Relate forces at the edges with internal stresses:

N(x) =
EA

ℓ
(u2 − u1) +

qℓ− 2qx

2
F1 = −N1 F2 = N2

■ Relate forces and displacements, but now an extra term appears:

EA

ℓ

[
1 −1
−1 1

] [
u1

u2

]
−

qℓ

2
qℓ

2

 =

[
F1

F2

]

4 / 12



Element loads — ODE approach

We can follow the same steps as before:
■ General solution for the ODE:

EA
d2u

dx2
= −q ⇒ u(x) = − qx2

2EA
+ C1x+ C2

■ Boundary conditions and final solution:

u(0) = u1 u(ℓ) = u2 ⇒ C1 =
qℓ

2EA
+

u2 − u1

ℓ
C2 = u1

u(x) =
q

2EA

(
ℓx− x2)+ u1

(
1− x

ℓ

)
+

u2x

ℓ

■ Relate forces at the edges with internal stresses:

N(x) =
EA

ℓ
(u2 − u1) +

qℓ− 2qx

2
F1 = −N1 F2 = N2

■ Relate forces and displacements, but now an extra term appears:

EA

ℓ

[
1 −1
−1 1

] [
u1

u2

]
−

qℓ

2
qℓ

2

 =

[
F1

F2

]

4 / 12



Dealing with equivalent loads

The new term is an equivalent nodal load:
■ Element loads ⇒ nodal loads
■ Force equilibrium at the nodes therefore changes a bit:

−
∑
e

fe+fnodal = 0

−
∑
e

(
Keue−feeq

)
+ fnodal = 0

∑
e

(Keue) = fnodal +
∑
e

feeq

Remember, this is a force in the global coordinate system!

feq = TTf eq

5 / 12



Dealing with equivalent loads

The new term is an equivalent nodal load:
■ Element loads ⇒ nodal loads
■ Force equilibrium at the nodes therefore changes a bit:

−
∑
e

fe+fnodal = 0

−
∑
e

(
Keue−feeq

)
+ fnodal = 0

∑
e

(Keue) = fnodal +
∑
e

feeq

Remember, this is a force in the global coordinate system!

feq = TTf eq

5 / 12



Work-based element loads

0 1

1

0

x

z
s1
s2
s3
s4

Euler-Bernoulli bending, point load at midspan:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by P under the same displacement:

Wq = Pw(ℓ/2) = (Ps1(ℓ/2))w1 + (Ps2(ℓ/2))φ1 + (Ps3(ℓ/2))w2 + (Ps4(ℓ/2))φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



P

2

−Pℓ

8
P

2
Pℓ

8



6 / 12



Work-based element loads

Euler-Bernoulli bending, point load at midspan:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by P under the same displacement:

Wq = Pw(ℓ/2) = (Ps1(ℓ/2))w1 + (Ps2(ℓ/2))φ1 + (Ps3(ℓ/2))w2 + (Ps4(ℓ/2))φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



P

2

−Pℓ

8
P

2
Pℓ

8



6 / 12



Work-based element loads

Euler-Bernoulli bending, point load at midspan:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by P under the same displacement:

Wq = Pw(ℓ/2) = (Ps1(ℓ/2))w1 + (Ps2(ℓ/2))φ1 + (Ps3(ℓ/2))w2 + (Ps4(ℓ/2))φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



P

2

−Pℓ

8
P

2
Pℓ

8



6 / 12



Work-based element loads

Euler-Bernoulli bending, point load at midspan:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by P under the same displacement:

Wq = Pw(ℓ/2) = (Ps1(ℓ/2))w1 + (Ps2(ℓ/2))φ1 + (Ps3(ℓ/2))w2 + (Ps4(ℓ/2))φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



P

2

−Pℓ

8
P

2
Pℓ

8


6 / 12



Work-based element loads

Euler-Bernoulli bending, constant distributed load:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by q under the same displacement:

Wq =

∫
ℓ

qw(x)dx =

(∫
ℓ

qs1(x)dx

)
w1 +

(∫
ℓ

qs2(x)dx

)
φ1 +

(∫
ℓ

qs3(x)dx

)
w2 +

(∫
ℓ

qs4(x)dx

)
φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



qℓ

2

−qℓ2

12
qℓ

2
qℓ2

12



7 / 12



Work-based element loads

Euler-Bernoulli bending, constant distributed load:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by q under the same displacement:

Wq =

∫
ℓ

qw(x)dx =

(∫
ℓ

qs1(x)dx

)
w1 +

(∫
ℓ

qs2(x)dx

)
φ1 +

(∫
ℓ

qs3(x)dx

)
w2 +

(∫
ℓ

qs4(x)dx

)
φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



qℓ

2

−qℓ2

12
qℓ

2
qℓ2

12



7 / 12



Work-based element loads

Euler-Bernoulli bending, constant distributed load:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by q under the same displacement:

Wq =

∫
ℓ

qw(x)dx =

(∫
ℓ

qs1(x)dx

)
w1 +

(∫
ℓ

qs2(x)dx

)
φ1 +

(∫
ℓ

qs3(x)dx

)
w2 +

(∫
ℓ

qs4(x)dx

)
φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



qℓ

2

−qℓ2

12
qℓ

2
qℓ2

12



7 / 12



Work-based element loads

Euler-Bernoulli bending, constant distributed load:
■ Displacement field for arbitrary DOFs (ODE with q = 0):

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Work performed by edge forces:

WF = F eq
1 w1 + T eq

1 φ1 + F eq
2 w2 + T eq

2 φ2

■ Work performed by q under the same displacement:

Wq =

∫
ℓ

qw(x)dx =

(∫
ℓ

qs1(x)dx

)
w1 +

(∫
ℓ

qs2(x)dx

)
φ1 +

(∫
ℓ

qs3(x)dx

)
w2 +

(∫
ℓ

qs4(x)dx

)
φ2

■ Enforcing WF = Wq and isolating terms:

feq =


F eq
1

T eq
1

F eq
2

T eq
2

 =



qℓ

2

−qℓ2

12
qℓ

2
qℓ2

12


7 / 12



Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
■ For a fixed DOF, we can simply discard the corresponding equation
■ We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:[
Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
ff
fc

]
■ Solve for the unknown DOFs:

Kffuf +Kfcuc = ff ⇒ uf = K−1
ff (ff −Kfcuc)

■ After solving, we can easily recover support reactions:

fc = Kcfuf +Kccuc

■ Note: fc includes both nodal loads, equivalent loads and support reactions.

8 / 12



Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
■ For a fixed DOF, we can simply discard the corresponding equation
■ We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:[
Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
ff
fc

]

■ Solve for the unknown DOFs:

Kffuf +Kfcuc = ff ⇒ uf = K−1
ff (ff −Kfcuc)

■ After solving, we can easily recover support reactions:

fc = Kcfuf +Kccuc

■ Note: fc includes both nodal loads, equivalent loads and support reactions.

8 / 12



Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
■ For a fixed DOF, we can simply discard the corresponding equation
■ We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:[
Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
ff
fc

]
■ Solve for the unknown DOFs:

Kffuf +Kfcuc = ff ⇒ uf = K−1
ff (ff −Kfcuc)

■ After solving, we can easily recover support reactions:

fc = Kcfuf +Kccuc

■ Note: fc includes both nodal loads, equivalent loads and support reactions.

8 / 12



Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
■ For a fixed DOF, we can simply discard the corresponding equation
■ We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:[
Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
ff
fc

]
■ Solve for the unknown DOFs:

Kffuf +Kfcuc = ff ⇒ uf = K−1
ff (ff −Kfcuc)

■ After solving, we can easily recover support reactions:

fc = Kcfuf +Kccuc

■ Note: fc includes both nodal loads, equivalent loads and support reactions.

8 / 12



Dirichlet BCs — Static condensation

Up until now displacement BCs have been simple:
■ For a fixed DOF, we can simply discard the corresponding equation
■ We did this by striking the corresponding row/column in the final system

To apply nonzero constraints we can partition the system:[
Kff Kfc

Kcf Kcc

] [
uf

uc

]
=

[
ff
fc

]
■ Solve for the unknown DOFs:

Kffuf +Kfcuc = ff ⇒ uf = K−1
ff (ff −Kfcuc)

■ After solving, we can easily recover support reactions:

fc = Kcfuf +Kccuc

■ Note: fc includes both nodal loads, equivalent loads and support reactions.

8 / 12



Dirichlet BCs — Size-preserving approach

K11 K12 K13

K21 K22 K23

K31 K32 K33

u1

u2

u3

 =

f1f2
f3



The approach from before can be annoying to code:
■ Reordering the system costs computation time
■ Gains when inverting the stiffness matrix are very limited (Nc ≪ Nf )

Alternatively, we can modify the relevant equations and solve the full system:
■ Support reactions recovered later from the unconstrained system

9 / 12



Dirichlet BCs — Size-preserving approach

K11 K12 K13

0 1 0
K31 K32 K33

u1

u2

u3

 =

 f1
∆2

f3



The approach from before can be annoying to code:
■ Reordering the system costs computation time
■ Gains when inverting the stiffness matrix are very limited (Nc ≪ Nf )

Alternatively, we can modify the relevant equations and solve the full system:
■ Support reactions recovered later from the unconstrained system

9 / 12



Dirichlet BCs — Size-preserving approach

K11 0 K13

0 1 0
K31 0 K33

u1

u2

u3

 =

f1 −K12∆2

∆2

f3 −K32∆2



The approach from before can be annoying to code:
■ Reordering the system costs computation time
■ Gains when inverting the stiffness matrix are very limited (Nc ≪ Nf )

Alternatively, we can modify the relevant equations and solve the full system:
■ Support reactions recovered later from the unconstrained system

9 / 12



Element-level postprocessing

From discrete nodal displacements to continuum element fields:
■ Assemble and solve the global system of equations:

Ku = f

■ Select ue from u and go back to the local coordinate system:

ue = Tue

■ From the ODE solution, recover relevant equations as function of ue, e.g.:

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Finally, plot the results! Works for displacements and any other internal field (e.g. moments)

10 / 12



Element-level postprocessing

From discrete nodal displacements to continuum element fields:
■ Assemble and solve the global system of equations:

Ku = f

■ Select ue from u and go back to the local coordinate system:

ue = Tue

■ From the ODE solution, recover relevant equations as function of ue, e.g.:

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Finally, plot the results! Works for displacements and any other internal field (e.g. moments)

10 / 12



Element-level postprocessing

From discrete nodal displacements to continuum element fields:
■ Assemble and solve the global system of equations:

Ku = f

■ Select ue from u and go back to the local coordinate system:

ue = Tue

■ From the ODE solution, recover relevant equations as function of ue, e.g.:

w(x) =

(
2x3

ℓ3
− 3x2

ℓ2
+ 1

)
︸ ︷︷ ︸

s1

w1 +

(
−x3

ℓ2
+

2x2

ℓ
− x

)
︸ ︷︷ ︸

s2

φ1 +

(
−2x3

ℓ3
+

3x2

ℓ2

)
︸ ︷︷ ︸

s3

w2 +

(
−x3

ℓ2
+

x2

ℓ

)
︸ ︷︷ ︸

s4

φ2

■ Finally, plot the results! Works for displacements and any other internal field (e.g. moments)

10 / 12



Matrix method versus FEM

The two methods give the same results for bars. However:
■ The matrix method solves the strong form ODEs exactly
■ FEM solves the weak form problem on the shape function space
■ Matrix method: strong form solved locally, elements glued together through equilibrium
■ FEM: The weak form is solved globally

But how can they give the same solution?
■ The "approximation" assumed by FEM (linear shape functions for extension, cubic for bending) turn

out to be the exact ODE solution

Then why don’t we just use the matrix method for everything?
■ Gluing elements through equilibrium only works in 1D
■ Exact ODE solutions in 2D generally do not exist

11 / 12



Matrix method versus FEM

The two methods give the same results for bars. However:
■ The matrix method solves the strong form ODEs exactly
■ FEM solves the weak form problem on the shape function space
■ Matrix method: strong form solved locally, elements glued together through equilibrium
■ FEM: The weak form is solved globally

But how can they give the same solution?
■ The "approximation" assumed by FEM (linear shape functions for extension, cubic for bending) turn

out to be the exact ODE solution

Then why don’t we just use the matrix method for everything?
■ Gluing elements through equilibrium only works in 1D
■ Exact ODE solutions in 2D generally do not exist

11 / 12



Matrix method versus FEM

The two methods give the same results for bars. However:
■ The matrix method solves the strong form ODEs exactly
■ FEM solves the weak form problem on the shape function space
■ Matrix method: strong form solved locally, elements glued together through equilibrium
■ FEM: The weak form is solved globally

But how can they give the same solution?
■ The "approximation" assumed by FEM (linear shape functions for extension, cubic for bending) turn

out to be the exact ODE solution

Then why don’t we just use the matrix method for everything?
■ Gluing elements through equilibrium only works in 1D
■ Exact ODE solutions in 2D generally do not exist

11 / 12



Example — 3D frame with torsion

Full solution by hand to demonstrate all steps:
■ Definition of a new element (torsion)
■ Element reduction for tractability (bending)
■ Element loads, support reactions (including distributed loads), postprocessing

Values for numerical calculation:
■ EI = 1000 kNm2

■ GIt = 800 kNm2

■ ℓ = 2 m
■ T = 4 kNm
■ q = 6 kN/m
■ m = 2 kNm/m

12 / 12


