CIEM5000: Structural Engineering Base

The Matrix Method in Statics



The Matrix Method

Main steps:

= Extract element matrices
Impose nodal equilibrium
Impose boundary conditions
Solve for unknown displacements
Postprocess results

This week:
= Recap differential equation for structures
Degrees of freedom at nodes
Local and global stiffness matrix
Neumann and Diriclet boundary conditions
Local-global transformations
Example: Displacements of extension bar
Workshop: Implement and check missing components, and solve a complicated frame

2
TUDelft
2/19



Learning Objectives

At the end of this module, you should be able to:
= Translate the main steps of the matrix method into a set of programming classes with distinct tasks

= Extend the classes to solve arbitrarily complex frame problems in statics
= Postprocess the analyses and recover continuum fields exactly

Learning setup:
= Lectures on theoretical aspects (2 x 2 h)
= Two guided, non-graded workshops (2 x 2 h), solutions provided afterwards
= Additional non-compulsory assignments exercises which you're ready for after the workshops

= Graded assignment as part of report

2
TUDelft

/19



2
TTTTTTT

Recap: A single-field problem

Getting to an ODE:

4/19



Recap: A single-field problem

Getting to an ODE:

= Kinematic relations:
dw . de

2
TUDelft
4/19



Recap: A single-field problem

Getting to an ODE:
= Kinematic relations:
_ e dp

dx T dx q
= Constitutive relations: l l 1 l l l 1 l
M = ElIk .

N EI
l< N
[~ ¢ 1

2
TUDelft
4/19



Recap: A single-field problem

Getting to an ODE:
= Kinematic relations:
_dw _dyp
Td T daz q
= Constitutive relations: ll 1 l l l 1 l
M = FElk i
= Equilibrium relations:
’ v __odM *l Bl |
dzx dzx < >
4

2
TUDelft
4/19



Recap: A single-field problem

Getting to an ODE:
= Kinematic relations:
_ dw _dy
dzx T dx
= Constitutive relations:
M = FElIk
= Equilibrium relations:
av _ M _
de a4 dez
Combining it all into a single differential equation:
d*w
El— =
azt ¢

2
TUDelft

7

A

4/19



2
TUDelft

Recap: A single-field problem

Solving the ODE (strong form!):

Ty
-

5/19



Recap: A single-field problem

Solving the ODE (strong form!):
= |ntegrate the ODE, exposing integration constants:

w(x):2gf+016x3+022x2+03x+04 H 1 lql l l l
SN EI .
<

2
TUDelft
5/19



Recap: A single-field problem

Solving the ODE (strong form!):
= |ntegrate the ODE, exposing integration constants:
4 3 2
_qzT Chx Cax q
]

= Enforce boundary conditions:

2
TUDelft
5/19



Recap: A single-field problem

Solving the ODE (strong form!):
= |ntegrate the ODE, exposing integration constants:
gzt Ciz®  Cax?

we)=gupr T ety TGt

= Enforce boundary conditions:

w(0)=0 ¢0)=0 M) =0 V{)=0
= Solve the system for the constants:

2
TUDelft

Ty
e

5/19



Recap: A single-field problem

Solving the ODE (strong form!):
= |ntegrate the ODE, exposing integration constants:

4 C 3 C 2 q
e T
= Enforce boundary conditions: o
w0)=0 @0)=0 M) =0 V()=0 | Bl |
= Solve the system for the constants: r~ £ i
a9 o
Cr=-gr Ce=gpp G2=Gi=0

Substituting the constants, a final solution for w can be found:

(@) qzt B gz ql?z?

YT o4EI T 6EI T 4EI

2
TUDelft
5/19



2
TUDelft

Recap: A two-field problem

EA,

|

EA,

<
'I‘

v

6/19



Recap: A two-field problem

§: {} Dﬁ)
S EA, EA,
|< > >J|
) ty
Field 1:
d%uy
DE: FA{—— =
0 2 0

Field: U = C’lx + CQ
BC: U1(0) =0

2
TUDelft

6/19



Recap: A two-field problem

§: {} Dﬁ)
S EA, EA,
|< > >J|
) ty
Field 1: Field 2:
d%uy d2us
ODEEA1d2:0 ODEEAQdQ:O
Field: uw; = Ciz + Oy Field: uy = C32 + C4
BC: u1(0) =0 BC: Nao(4y +0) = F

2
TUDelft

6/19



Recap: A two-field problem

S EA, EA,
|< > >J|
) ty
Field 1: Field 2:
d%uy d2us
ODEEA1d2:0 ODEEAng:O
Field: uw; = Ciz + Oy Field: uy = C32 + C4
BC: u1(0) =0 BC: Nao(4y +0) = F
IC: ul(fl) ZUQ(fl) Nl(fl) :Ng(gl)

2
TUDelft

6/19



Okay, easy. But how about this one?

Integration constants? Interface conditions? It gets annoying very quickly...

2
TUDelft
7/19



Remember the displacement method?

Instead of solving for integration constants, we could solve for nodal displacements as we did before for
statically indeterminate structures:

= Chop the structure into statically-determinate parts

= Solve each separately then reinstate equilibrium at the interface

q
S EA,  EA,

2
TUDelft
8/19



Remember the displacement method?
Instead of solving for integration constants, we could solve for nodal displacements as we did before for
statically indeterminate structures:

= Chop the structure into statically-determinate parts
= Solve each separately then reinstate equilibrium at the interface

/”’,——""“-\’~‘ Up Uy

= = q
=~ — —> —> [0 F(z)_’ — > —>
EA, § § EA, E EA, §
e [
4

q
fl 52 51 2

Ul
B
[m]

2
TUDelft

8/19



Remember the displacement method?

Instead of solving for integration constants, we could solve for nodal displacements as we did before for
statically indeterminate structures:

= Chop the structure into statically-determinate parts

= Solve each separately then reinstate equilibrium at the interface

/\A Up Uy

q = == q
§ < — —> —> [0 FP— — —>
S EA,  EA, § § EA, E EA, §
8 ) , )
b fiq _ b e l3q
v = g 2EA, v =gt Y aEa,

2
TUDelft
8/19



Remember the displacement method?

Instead of solving for integration constants, we could solve for nodal displacements as we did before for
statically indeterminate structures:

= Chop the structure into statically-determinate parts

= Solve each separately then reinstate equilibrium at the interface

=, = =2

q q
§: § — —> —> [0 F(Z)—> — > —>
S EA,  EA, § EA, E EA, §

S e e

1 2 51 52
b oy liq L (2 l5q
- R 19 - _ F
2= Fa, 2EA, Y =TEA0 T aEa,
l1q log
. +
FUO=F® = u= 1-;_421 PQ/-\z
0 =

2
TUDelft

8/19



2
TUDelft

Is there an even more structured way? Deformation of a single element

F;
— [}

=

Uyg

EA, ¢

9/19



Is there an even more structured way? Deformation of a single element

ODE solution:
d%u
FA— =0
dz?

2
TUDelft

9/19



Is there an even more structured way? Deformation of a single element

ODE solution:
d%u
FA— =0
dz?

u(z) = Ciz + Cy
w(0) =u; ull) =uq

Uz — U

C = 7 Co=u
xT a
w=u (1-7) +uwg

2
TUDelft

Element forces:
EFA

NZT(UZ_Ul)

Nodal forces:

9/19



How to combine elements? Nodal equilibrium

e
]

H  FY RO Y F F® R FP F® F
O—> > > —— > <€ —> —> «—0—>
EA, 1 (1) 2 (2)

»le |

g gl
8 b,

EA,

2
TUDelft

10/19



How to combine elements? Nodal equilibrium

_ F H FY RV
S5 EA,

Node equilibrium:

EA EA
ZFI =0= —7lU1+711L2+H=O
ly {1

EA FEA EFA
ZFQ =0= 7111 771’1127727124»
{1 0y ly

EA E A
ZE:‘FE =0= 4442 2—"424£U3 +F=0

e =0
0

2
TUDelft

F(l)

O R po

2 2 1 1

A O—> —)?(— - — > €« 0€— —>
2

F® F® F
— =

10/19



How to combine elements? Nodal equilibrium

7
=

m

=

A

=
4

Node equilibrium:

EA
S h=0= Sy,
b

EA
SNh=0=""u
2

EA
1+TIUQ +H=0
1

- bBA EAs

uf—u+EA2
6o P

e =0
0

S

EAy  EA,

—0:>7 2—TU3+F—0

2
TUDelft

F](l) Fl(l) F;l)

Fél) FI(Z) FI(Z)
[J— —>%1<— —_—_— S € —>

Combining and rearranging:

- Z ¢+ fnodal =0

Z £ = nodal
e

F® F® F
— =

10/19



Deformation of a single element — matrix form

F F,
—> 0 O—>
= FEA,( =

Uyg Up

z
TUDelft
1/19



Deformation of a single element — matrix form

F; F,
— [} {] =—
= FA{ =
Uyg Up

Nodal forces:

EA FA
Fy — T e

EA EA
Fo=——u+ —us

2
TUDelft

1/19



Deformation of a single element — matrix form

F; F,
— [} {] =—
= FA{ =
Uyg Up

Nodal forces:

2 EA EA
1= UL — U2

FA EA
Fo=——u+ —us

2
TUDelft

Matrix formulation
EAT1 —1]|u| [F
7 —1 1 u9 o F2

KOu© — £



Nodal equilibrium — matrix form

[l

F H FO FO F{O pO O p® F& PP F
§ 0—>» >l —> — —> <0 —> —> < 0—>
RS EA, FEA, 1 (D 2 (2) 3

l< »le >
>

2
TUDelft
12/19



Nodal equilibrium — matrix form

F_H R

7
£

A

Node equilibrium:

EA EA
S h=0=-——"ut+—tuy+H=0
0 0

EA FEA EFA
ZF2:O:>T1u1771 2
1

attn

ZFg =0= 721L2—7ZU3+F:0
Uy Uy

EA,
e =0
0

2
TUDelft

Fél)

Fél) FI(Z) FI(Z)
A O—> —)ﬁk@-—)~———-—>»<+m<+ —
2

F® F® F
— =

12/19



Nodal equilibrium — matrix form

F H F](l) Fl(l) F;l) Fél) FI(Z) FI(Z) F7(2) FéZ) F
- O0—>» >l > — —> <0< —> — < 0>
S EA, EA, I (1) 2 @)

le e N
= T gl
8 t,
Node equilibrium: Matrix formulation:
EA EA EA, _EA
S R=0= " lu uy r H=0 7 0 U H
él o E}Al EA1 + EAZ EA) u2 0
0 0 0 0
EA EA EA: EA. _ EA, EA, us F
ZF2=0:>—1u Ty T gt Py = 0 0 2 b
Y4 51 52 52
EA. EA. —
ZFg,_o:>—2 2—TZU3+F—0 Ku=f

2
TUDelft

12/19



A more structured way to work

Steps:
= |dentify degrees of freedom at nodes (DOFs)

Uy Up U3

2
TUDelft
13/19



A more structured way to work

Steps:
= |dentify degrees of freedom at nodes (DOFs)
= |nitialize the system with zeros

U Uy Us
== == ==
0 0 0

0 0 0] |™ 0

0 0 0| |uz| = |0

0 0 0] |ug 0

2
TUDelft
13/19



A more structured way to work

Steps:
= |dentify degrees of freedom at nodes (DOFs)
= |nitialize the system with zeros
= Assemble stiffness, element by element

Uy Uy U3
> > >
(D)
[ {] O
EA,
- .
t,
u

2
TUDelft
13/19



A more structured way to work

Steps:
= |dentify degrees of freedom at nodes (DOFs)
= |nitialize the system with zeros
= Assemble stiffness, element by element

U, Uy U3
== => ==
(1) (2
[, {} {]
EA, EA,
< e >
¢ &,

EA _EA 0 Ul 0
_Ba A, _ilEA2 _BA | fug| — |0
44 I3 Ly Ly -

0 o E/Az % us 0

2
TUDelft
13/19



A more structured way to work

Steps:
Identify degrees of freedom at nodes (DOFs)

Initialize the system with zeros

n
= Assemble stiffness, element by element U u U
= Apply external loads (Neumann BCs) 73:1 73:2 :3
(D (2 F
[, {} e
EA, EA,
le <
[~ T g
¢ >
EA1 o EAl 0 (75} 0
0 /A
_EA BA { BA, _BA | |uy| — |0
E[ f€| fg 42 -
0 ~ 5 Ll s F
13/19

2
TUDelft



2
TUDelft

A more structured way to work

Steps:

Identify degrees of freedom at nodes (DOFs)

Initialize the system with zeros
Assemble stiffness, element by element
Apply external loads (Neumann BCs)

Apply prescribed displacements (Dirichlet BCs)

Uy Uy Us
= => =
(1) (2) F
{} (-
NN EA] EAZ
I< r|€ 'l
f] 52
El EA o= N1 CE]
/ A Y N
_BA, BA, | EA,  _EA ug| = | 0
) I [ I -
EA, EA, U3 F
62 [2

13/19



A more structured way to work

Steps:
Identify degrees of freedom at nodes (DOFs)
Initialize the system with zeros

n
= Assemble stiffness, element by element U u U
= Apply external loads (Neumann BCs) 73:1 73:2 :3
= Apply prescribed displacements (Dirichlet BCs) 7
= Solve for the unkown nodal displacements (1) _ (2) 0 FE
S EA, EA,
l€ <
[~ i g
l ‘
EA;  FEA, EAs ” 0 -
A el 2 _ El 4 PR e CEO]
- L F Aa, Ba, DA ;A 0
P 2 — 2 _ p u —
[z éz : 1 6[ 1 _|_ 22 42 2 D) —
EA, EA, us3 F
u Fq F (EA1f2 + EAQ[l) U I
) _

T EA BT EA, EA,

2
TUDelft

13/19



Coding the matrix method

The method is well structured and can be broken down as follows:
= Alist of Nodes floating in space with loads and DOFs associated to them

b
S

2
TUDelft
14/19



Coding the matrix method
The method is well structured and can be broken down as follows:

= Alist of Nodes floating in space with loads and DOFs associated to them
= A list of Elements defined by linking two nodes together

!

2
TUDelft
14/19



Coding the matrix method
The method is well structured and can be broken down as follows:
= Alist of Nodes floating in space with loads and DOFs associated to them

= A list of Elements defined by linking two nodes together
= A Constrainer to apply Dirichlet boundary conditions

!

2
TUDelft

14/19



Coding the matrix method

The method is well structured and can be broken down as follows:
= Alist of Nodes floating in space with loads and DOFs associated to them
= A list of Elements defined by linking two nodes together
= A Constrainer to apply Dirichlet boundary conditions

With this in mind, we can define object-oriented code which can be loaded as a python package:

- Performs coordinate transformations - Stores nodal data o - Applies Dirichlet BCs
- Recovers fields from nodal values - Keeps track of global DOF indices - Recovers support reactions

2
TUDelft

15/19



Other element types

Different element kinematics and stiffness matrices, same procedure

’ D1 P2 y
R, PBACL R Tr/(* ) FA, B ¢ ‘)Tz/
VE T
Fiow wy, F3
BA

= =
Uy Up

R T N
2 BA 0 1251 7611;1 7121;:1 7613;1

KO =| £ S0 0 ber afi 0 6EI kT
T |_BA EA P

0 1261 6EI - 12BI  GEI
E 2 3 w2
T
2 ‘ 2 [

16 /19

2
TUDelft



Element orientations, local-global transformations

Defining a local (element) coordinate system is useful:
= Single stiffness matrix for every element!
= Assembly: From local to global
= Postprocessing: From global to local

GSS, forceg

ESS

T3
(i\QEA EL f\qr

’ Uy

2
TUDelft
17/19



Local-global transformations

Transformations for an arbitrary vector:
vz| _ |cosa —sinoa| |ve Vz| | cosa sina| | vz
vz| |sina cosa ||v. v.| |—sina cosal |vs
| —

R RrRT

2
TUDelft
18/19



Local-global transformations

Transformations for an arbitrary vector:
V| | cosa sin o z
v, | |—sina cosal |1

vz| _ |cosa —sinoa| |ve
vz| |sina cosa ||v.
— —
R RrRT

Transformations for a complete element:

u1 cosa —sina 0 0 0 0] w1

w1 sin o cosa O 0 0 0f w1

Pl 0 0 1 0 0 0 [¢1

us | 0 0 0 cosa —sina O |wus

Wa 0 0 0 sina CcoS « 0 wa

P2 0 0 0 0 0 1] [p2
T

2
TUDelft
18/19



Local-global transformations

Transformations for an arbitrary vector:
vz| _ |cosa —sinoa| |ve V| | cosa sin «v
vz| |sina cosa ||v. v.| |—sina cosa
R RrRT

Transformations for a complete element:

u1 cosa —sina 0 0 0 0] w1
w1 sin o cos a 0 0 0 0 w1
P 0 0 1 0 0 0 [¢1
us | 0 0 0 cosa —sina O |wus
mp) 0 0 0 sina CcoS « 0 wa
P2 0 0 0 0 0 1] [p2

T
With this we can define the following important transformations:
i=Tu f=Tf u=T"ua f=T"f
K=T"KT

2
TUDelft
18/19



Outlook

First ungraded workshop:
= Get familiar with an initial Python code
Implement a few missing parts and perform some sanity checks
Apply your implementations to a small structure
Have Git and VS Code with Python, NumPy, matplotlib, SymPy and Jupyter installed and ready
Never used Git and GitHub? Let me (Tom) know!

Next week:
= One more lecture on theoretical aspects
= Second ungraded workshop to add more implementations and solve a more advanced structure
= Graded assignment: Implement, check and apply new features required for complicated frame
structure and additional results.

2
TUDelft
19/19



